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Abstract:  Quantifying the probability of significant launch vehicle failure scenarios for a given design, 
while still in the design process, is critical to mission success and to the safety of the astronauts.  
Probabilistic risk assessment (PRA) is chosen from many system safety and reliability tools to verify the 
loss of mission (LOM) and loss of crew (LOC) requirements set by the NASA Program Office.  To 
support the integrated vehicle PRA, probabilistic design analysis (PDA) models are developed by using 
vehicle design and operation data to better quantify failure probabilities and to better understand the 
characteristics of a failure and its outcome.   

This PDA approach uses a physics-based model to describe the system behavior and response for a given 
failure scenario.  Each driving parameter in the model is treated as a random variable with a distribution 
function.  Monte Carlo simulation is used to perform probabilistic calculations to statistically obtain the 
failure probability.  Sensitivity analyses are performed to show how input parameters affect the predicted 
failure probability, providing insight for potential design improvements to mitigate the risk.  The paper 
discusses the application of the PDA approach in determining the probability of failure for two scenarios 
from the NASA Ares I project.  
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1.  INTRODUCTION 

Probabilistic design has existed for more than 40 years: it incorporates uncertainty into engineering design 
analysis processes to aid designers in producing optimum designs for a performance function.  As 
discussed by Goldberg et al. [1], a probabilistic approach, namely probabilistic design analysis (PDA), 
can be used to assess the risks for given space launch-vehicle failure modes.  Today, a PDA also can be 
used as a tool to determine the probability of occurrence and the consequences of given 
phenomenological failure scenarios in complex systems, such as the NASA Constellation Ares I launch 
vehicle.    
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The PDA technique is one of the tools in the system safety, reliability, and risk assessment toolbox.  This 
tool set includes both qualitative and quantitative techniques, such as hazard analysis (HA), failure modes 
and effects analysis (FMEA), fault tree analysis (FTA), and probabilistic risk assessment (PRA).  These 
techniques each have their own strengths and weaknesses, but they complement each other well. 
Together, these techniques can be used to evaluate and build a complete picture of the risk of a system 
and its interaction with other systems and the environment.  Failure probabilities and failure outcomes are 
two essential inputs to PRA.  Sources of these failure probabilities may be obtained from actual flight or 
test history, industry or manufacturer’s data, military standards or handbooks, historical records, 
simulation analysis, expert elicitations, or PDA.  For the Ares I PRA, and applicable to any PRA, PDA is 
used in the development of a physics-based model to describe the behavior or characteristic of the failure 
scenario of concern.  The determined failure consequence(s) and probabilities are then fed back to the 
design and safety communities and into the PRA. 

In today’s economy and space launch environment, demands for increased reliability and operability must 
be met within a shorter program development schedule and for fewer dollars.  As a part of NASA’s 
Continued Risk Management process for the Constellation Program (CxP), hazard analysis, reliability 
assessment, and PRA are initiated and performed early in the design phase of the program to identify, 
assess, and to impact design and operations. 

The Ares I Vehicle Integration Crew Safety and Reliability (CSR) group was tasked to perform an 
integrated Ares vehicle loss of mission (LOM) PRA and to provide abort effectiveness and loss of crew 
(LOC) assessments.  The CSR Ares Ascent Risk Analysis (ARA) working group at NASA Marshall 
Space Flight Center is performing an integrated vehicle LOM PRA to verify that the overall Ares I LOM 
requirement is met, as well as providing the inputs that are needed for the abort effectiveness and LOC 
calculations to be conducted by the Simulation Assisted Risk Analysis (SARA) team at NASA Ames 
Research Center.  A physics-based PDA is used to supplement both the LOC and LOM assessment 
efforts, where physics-based models are used for the quantification of each failure scenario, the 
conditional failure probability calculations, and the failure end-state assessments.  In so doing, the use of 
expert elicitation, non-similar system historical records, and handbooks data is minimized.  In support of 
this PRA effort, the System Integration Failure Analysis (SIFA) team in CSR was tasked to develop PDA 
models for high-risk failure scenarios.  Using PDA to obtain the failure probability provides more design- 
and system-specific and more realistic analysis; thus, the aggregate reliability estimates more accurately 
reflect the overall risk of the system.  The outputs of the PRA and the SIFA are used by the CSR 
Integrated Abort Analysis team to determine the Ares I abort effectiveness and to verify that the Ares I 
design meets the CxP LOC requirements.   

In this paper, we first discuss the PDA methodology and the most practiced PDA process in determining 
the cross-system failure probabilities for the NASA Ares I launch vehicle.  Next, we present two 
examples of PDA cases to illustrate the modeling effort and provide some results in support of the 
integrated Ares I PRA.  These cases demonstrate the application of PDA to PRA, and a collaborative 
effort from various engineering disciplinary branches and Ares I vehicle element offices. 
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2.  PDA METHODOLOGY OVERVIEW 

2.1.  Description 

PDA is a probabilistic approach that offers the desired realism in analysis by providing the failure 
probability in a range of parameter values. Instead of a single value, each variable is treated as a 
probability distribution with a range of values.  Certain combinations of input parameters (variables) and 
values can lead to a higher probability of failure.  From this perspective, PDA results provide the 
opportunity for design improvement by adjusting the design parameters to avoid the failure space, thereby 
mitigating the risk.  In addition, PDA results can be used to generate the uncertainty or variability of the 
failure probability.   

A physics-based PDA model comprises the underlying analysis assumptions, core equations, a failure 
criterion, and input and output parameters. The fidelity of the constructed PDA model varies; it is 
dependent upon problem understanding, the design maturity level, and the ability to appropriately model 
the physics involved. To differentiate the models from the detailed component and in-depth subsystem 
reliability models that are used in various disciplines and organizations, the PDA models presented in this 
paper focus on the first-order simplified analyses.  In addition to determining model appropriateness, 
other challenges in PDA methodology include determining the input parameters that have variations and 
properly quantifying the variations in the parameters that affect the failure probability.  Furthermore, a 
failure criterion must be defined based on the concept of burden versus capability (or in terms of stress 
versus strength) in order to compute the failure probability. 

PDA techniques involve Monte Carlo simulations (MCS) with assumed uncertainties to compute the 
probability of the occurrence of a critical failure. Physics-based PDA models typically include the 
computation of the core equations that describe the physics and calculation of the failure probabilities in a 
probabilistic manner.  A uniform distribution is primarily used for the parameter uncertainty in lieu of 
vehicle- and component-specific values.  For each simulation run, the failure criterion is employed to 
determine the occurrence of failure.  When the failure criterion is met (i.e., burden exceeds capability), a 
failure count is registered.  At the end of the MCS calculation, the failure count statistics are used to 
compute the probability of the occurrence of a failure (i.e., the ratio of the number of iterations that 
indicate “failed” to the total number of iterations in MCS).  Additionally, the simulation statistics can be 
generated from the MCS results. 

2.2.  Process 

The process that is outlined here is the established procedure that the SIFA team uses to perform a PDA 
on Ares I launch vehicle.  The process begins with the identification of high-risk failure scenarios that 
require PDA, as depicted in Figure 1.  This preparatory activity to a PDA is a joint effort by many 
working groups within the Ares I CSR, including the PRA, FMEA, System Safety, SARA, and Ares 
Integrated Abort Analysis teams; these groups discuss and prioritize the assessment cases.  Disciplinary 
experts are consulted to gain more insight on the design properties and characteristics, as well as the 
potential causes and effects of the failure.  For the selected failure scenarios, the PDA analysts will further 
carry out a feasibility study on the available data, the analysis approach, resources, and scheduling. 

Once a PDA case is deemed feasible, it is officially formulated with a problem statement, data source, 
analysis approach, customers, and a proposed analysis schedule.  A PDA model is subsequently 
developed to describe the physics and the system response to the considered failure scenario, including a 
failure criterion.  The PDA analysts obtain the input data from the element office or from the disciplinary 
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branches.  Further consultation is conducted to determine the key model parameters and the associated 
parameter uncertainties.  The PDA model is typically implemented in MATLAB [2] for Monte Carlo 
simulation to compute the failure probability.  In addition to computing a failure probability with the 
parameter values randomly generated, sensitivity analyses are also conducted to evaluate the change of 
failure probability that is attributable to a systematic change in a chosen sensitivity parameter.  Upon 
analysis completion, a PDA report is written to document the study effort and the analysis results.  The 
PDA reports and results are then fed back to the CSR teams, and to Ares I project and the element offices 
for inclusion in their respected analysis.  For the Ares LOM and abort-effectiveness assessments, the 
results are used to update the failure scenario probabilities, as well as the consequences and severity of the 
failure. 

Figure 1. General PDA process for NASA Ares I risk analysis. 

 

 

3.  EXAMPLES OF PDA CASES 

3.1.  Background 

Within the goals of NASA’s exploration missions, an inline, two-stage rocket, Ares I, is under 
development as a next-generation space transportation system.  The major Ares I vehicle elements [3], 
which include the Orion capsule, a service module, and a launch abort system, are shown in Figure 2.  
The launch vehicle’s first stage is a single, five-segment, Space Shuttle derived, and reusable solid rocket 
booster.  The Ares I upper stage is propelled by a J-2X engine fueled with liquid oxygen and liquid 
hydrogen.  The J-2X is a gas-generator cycle engine; its design is based on the legacy design of the J-2/J-
2S family of engines from the Apollo era.  During the Ares I ascent phase, the first-stage booster powers 
the vehicle for the first two and a half minutes of flight to a speed of about Mach 5.7.  Then, the first stage 
separates from the vehicle, and the upper stage J-2X engine ignites and powers the vehicle. 
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The integrated Ares I Preliminary Design Review (PDR) LOM PRA yielded several thousand LOM 
minimum cut sets; these were grouped into “super cut sets,” LOM environments, and failure bins for ease 
of use and reporting [4].  The overall Ares I PDR LOM estimate is less than the required mean LOM risk 
value of 1 in 500 that was set forth in the System Requirements Document [5].  The PDR LOM estimate 
included potentially conservative estimates of many cross-system or vehicle integration risks, such as 
liftoff recontact with tower, ascent debris, upper stage pogo, ascent bird strikes, separation recontact, and 
so forth.  In support of the PRA, the SIFA team has performed a number of PDA’s for selected high-risk 
failure scenarios to better quantify the failure probability and to eliminate conservatism from the overall 
LOC and LOM assessments; these failure scenarios include ascent debris, bird strike, interstage leak 
localized damage, liftoff umbilical recontact, upper stage engine gas-generator rupture, and so on.  Two 
PDA examples are discussed in the following section to illustrate the modeling effort and the results that 
were obtained using the PDA process that is described in the previous section.  

Figure 2. NASA Ares I launch vehicle. 

 
 
3.2.  Case I: Upper Stage Engine Uncontained Failure 

Uncontained failure of the upper stage engine during the upper stage boost is one of the top LOM and 
LOC risk drivers.  One of the potential causes of an uncontained failure is the penetration of the fuel 
turbopump (FTP) turbine blade fragments during J-2X engine operations.  Loss of the FTP blade was 
classified as a high-criticality failure mode in the Ares I FMEA [6] because a released blade fragment 
with high kinetic energy, if not contained, may impact other engine components and/or the upper stage.  
The current LOM assessment only addresses the likelihood of the FTP uncontained failure resulting in 
debris and propellant liberation but does not address debris liberation and impact to other engine 
components or the upper stage.  The reason for this is that once the pump suffers an uncontained failure, 
LOM is realized.  However, to obtain the Ares abort effectiveness and the LOC calculations, this 
additional information is needed to assess the secondary effects of the uncontained failure. 

The function of the FTP turbine is to absorb energy from the gas-generator exhaust gas flow and convert 
it into mechanical energy (i.e., shaft power) to drive the FTP pump, which, in turn, raises the propellant 
pressure to meet the engine inlet conditions that are required for combustion to produce the specified 
thrust.  Figure 3 is a general configuration of the J-2X FTP [7], which shows the hot gas-generator gas (in 
red) flowing through the turbine section.  The rotor turbine blades are designed to meet the required 
structural safety factors.  However, unexpected operating environments, uncontrolled material properties, 
and defects and anomalies in the blade casting process remain potential causes of a blade failure scenario.  
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Furthermore, the turbine housing is designed to withstand the J-2X operating conditions but is not 
specifically designed to contain blade fragments.  

Figure 3. J-2X fuel turbopump. 

 

The dynamics of blade fragments that are released from the turbine disk can be complex.  As a first 
approximation, the J-2X FTP turbine blade penetration PDA model uses two closed-form ballistic 
penetration equations [8] to determine whether the turbine blade fragments will penetrate the turbine 
housing.  In this simplified approach, the blade fragment is assumed upon detachment to move in a 
straight line toward the turbine housing wall.   The fragment trajectory, deformation, and breakup, as well 
as other complex dynamics, are neglected.  The underlying concept in this physics-based probabilistic 
model is to compare the energy absorption capability of the target material (i.e., turbine housing) with the 
impacting kinetic energy of the blade fragments.  The turbine blade fragment will penetrate the housing 
when the designed target thickness (i.e., capability) is less than the required thickness (treq) to contain or 
absorb the fragment impact (i.e., burden).  Table 1 lists some model input parameters.   

Table 1. Sample Input Parameters for Blade Penetration PDA Model 

Component Parameter Component Parameter 

Blade fragment 
Mass 

Turbine housing 
Target material density 

Initial impact velocity Target material thickness 
Fragment impact angle Dynamic shear modulus 

Two thousand Monte Carlo simulation runs were conducted to evaluate the blade penetration model. All 
of the MCS input parameters were uniformly distributed; the only exception was that a triangular 
distribution was assumed for initial blade-fragment impact velocity.  For each calculation, the penetration 
criterion of treq was employed to determine the probability of the occurrence of failure. For the given 
configuration, the results indicate that the first housing wall can be penetrated and that a threshold for 
containment exists in terms of the equivalent number of fragments or the kinetic energy of the fragment 
field.  Furthermore, the preliminary blade-fragment damage potential (Figure 4), based on the straight-line 
trajectory, indicates that a direct strike of blade fragments on the upper stage structure is unlikely; 
however, concern should be given to the engine components around the FTP.  The output of this PDA is 
used by the Ares CSR SARA and LOM teams to determine the probability of upper stage structural 
failure due to an uncontained failure of the FTP. 
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Figure 4. Turbine blade-fragment damage potential. 

 

3.3.  Case II: Liftoff  Recontact 

Ares I liftoff clearance requirement R.EA 1023, presented in reference [9], states, “Ares I shall provide 
liftoff clearance between the Ares I integrated stack vehicle and the launch facility.”  However, the liftoff 
recontact failure bin was identified as a high LOM risk driver as a result of conservative estimates  based 
on global historical launch data and pre-PDR design limitations and engineering judgment.  Figure 5 
shows an artist’s rendition of the Ares I on the launch pad [10].   

The second scenario spans multiple projects, including Ares, the Orion crew vehicle, ground (launch 
tower), mission systems, and natural environments.  During its PDR, the Ares Project took the initiative 
to bound the assessment of the risks of recontact given wind gusts, first-stage thrust vector control (TVC) 
biasing and failure, vehicle drift, and nominal T-0 ground-support system release.  The initial assessment 
was shared with the CxP mission LOC LOM PRA, and the integrated PRA model (both at the program 
and the Ares project level) is being updated to better model the consequences of various ground-side and 
the T-0 umbilical failures.  The results of the PDA will be used to support the conditional probability 
calculation. The PDA was utilized to evaluate the potential for liftoff recontact for several ground-support 
systems for T-0 release.  The specific example presented here is the PDA for liftoff vehicle damping 
system recontact.    

Prior to launch, the long, thin cylindrical Ares I launch vehicle on the launch pad may experience high 
ground winds. Wind gusts that oscillate near a resonant frequency of the launch vehicle can generate 
excessive motion and stress that can exceed vehicle structural design limits. To address the ground wind 
problem, a vehicle damping system was designed to reduce vehicle lateral motion caused by wind-
induced oscillation.  The damper arm interfaces with the vehicle at the upper stage instrument unit.  
Figure 6 shows the general structure of the damper arm, including two struts that interface laterally with 
the vehicle [11].  In a nominally mated configuration, the arm is positioned 0 deg from the horizontal and 
is disconnected at T-0 upon receipt of the launch release signal.  Based on the arm-drop and strut-retract 
dynamics that were provided by NASA Kennedy Space Center [12], a model of the damper retract path 
was developed in MATLAB to compute the temporal angular position of the overall arm tip.  
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          Figure 5. Ares I on the launch pad.                          Figure 6. Ares I damper arm.

 

The arm drops at nearly the same time as the vehicle lifts off.  In this recontact PDA model, the vehicle 
liftoff drift trajectories were coupled with the retract path of damper arm to determine the probability of 
recontact during vehicle liftoff.   Ares I liftoff and drift analyses [13] were performed focusing on the 
clearance between the vehicle and the mobile launcher tower (MLT) that is located on the north side of 
the vehicle.  Nearly 3,000 drift trajectories with a maximum wind speed of 34.4 knots were used in this 
PDA.  These drift trajectories are the probabilistic results from the liftoff drift simulation, where vehicle 
subsystem models were included with numerous parameters for a range of dynamic environmental and 
vehicle conditions.  Each liftoff simulation was run from liftoff (T-0) through clearance above the 
lightning protection system.  The drift data contain the vehicle pitch, yaw, and roll rates, which were used 
in the PDA model to compute the spatial location of the node points in the vehicle surface grid/mesh 
system.  Subsequently, the separation distance between the damper arm tip and the nodes of the vehicle 
surface mesh is computed.  This recontact PDA employed two separation clearance criteria to assess how 
these metrics affect the recontact, or failure, count statistics.  The two recontact criteria are as follows: (1) 
the separation distance is < 7 in. for a keep-out zone violation, and (2) the separation distance is 0 in. or 
less for direct contact.  The recontact probability is a function of time; the failure statistics are  counted 
only after a prescribed time delay.  This user-specified time threshold is necessary for the direct contact 
criterion to allow the damper arm to disengage from the vehicle.  It is necessary for the keep-out zone 
criterion to allow the vehicle to achieve the initial 7 in. clearance.   

With all randomized drift trajectories, the MCS results show that the recontact probability with a 7-in. 
clearance is one order of magnitude smaller than that with a 0-in. clearance, indicating the direct contact 
criterion is more stringent than the keep-out zone criterion.  Sensitivity analysis on the damper release 
time delay was conducted with a limited number of runs and with the use of the trajectory data set with 
the furthest northward drift.  A time delay case examines the scenario in which the struts disengage from 
the vehicle and fail to retract immediately; thus, the struts maintain their position for a short period of 
time before retracting.  The results suggest that if the time delay is greater than 0.5 s, then the damper arm 
struts remain positioned within the keep-out zone and have a higher probability of recontact.  As 
previously stated, the results of the PDA will be tied to the CxP LOC LOM PRA and the ground PRA.  
The ground PRA will provide the initiating event probabilities of a damper system failure to meet the 0.5 
s clearance time that is imposed by the PDA and by the Ares project to incorporate sudden wind gust and 
off-nominal TVC performance.  
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4.  CONCLUSIONS 

Designing a space launch vehicle with a high degree of both reliability and safety requires a significant 
assessment of risk beginning in the conceptual phase of the vehicle design and continuing throughout the 
life of the vehicle.  This paper discussed probabilistic design analysis (PDA) methodology and practices 
that have been used to support the integrated probabilistic risk assessment (PRA) of the NASA Ares I 
launch vehicle in the Constellation Program.  The failure probability data that were obtained from the 
PDA are more design- and system-specific because actual vehicle design and operation data were used in 
the physics-based model.  The PDA technique takes into account the variability of the design parameters 
through the use of “random” values of input parameters in the model.  Two PDA examples were 
presented to illustrate how PDA can be applied to different failure scenarios that can occur for various 
Ares I components/elements.  As a vehicle design matures, a greater understanding of the system 
characteristics is attained, and more design and testing data are available for use in the PDA. This 
provides better failure probability data to ultimately obtain better LOM and LOC estimates. 
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